
After eVoting it is the time to calculate the results.
EC verifies Voter's Vw PuKw and if PuKW is registered in EC database then goes to step 2.1.
EC verifies PuKw certificate and if it is valid then goes to step 3.2.
EC verifies signature σw on EE and if it is valid then extracts IE and prceeds with ballots computation.3.

>> p=109;
>> q=127;

>> N=p*q % PuKEC=NEC=13843

N = 13843

 % |N|=14 bits
>> N_2=int64(N*N)

Voter Victor - W

PrKw PuKw

Enc(PuKEC,VW)=EV

Internal Envelope
 IE

External Envelope
 EE

Election Committee - EC

PrKECPuKEC

Sign(PrKW,EE)=σW

Conseal the Vote Vw

in the Ballot:

eVoting System must guarantee:
Conseal the Vote-

Conseal the Ballots-

Signed EE with Voter's Vw
signature σw and PuKw

σw:

PuKw

Table of eVoting in Google drive
https://docs.google.com/spreadsheets/d/1joAuG6oh1arcQqc7zPTPbLBH48wG8Fn6/edit?
usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true

`116_004_Paillier-Encr-eVoting

 `116_004_Paillier-Encr-eVoting Page 1

https://docs.google.com/spreadsheets/d/1joAuG6oh1arcQqc7zPTPbLBH48wG8Fn6/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1joAuG6oh1arcQqc7zPTPbLBH48wG8Fn6/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true

>> N_2=int64(N*N)
N_2 = 191628649

>> dec2bin(N_2)
ans = 1011 0110 1100 0000 0101 0110 1001

>> fy=(p-1)*(q-1)
fy = 13608 % PrKEC=fy

Let: K - be a number of Candidates (Can); for example.
 M - be a number of Voters (V); M=15.

 `116_004_Paillier-Encr-eVoting Page 2

 M - be a number of Voters (V); M=15.
For every candidate Can1, Can2, …, CanK the Vote is encoded by certain integer number.
Since all Votes are encrypted by every Voter using Paillier homomorphic encryption scheme, therefore
the maximal sum of Votes must not increase PuKEC value N.
It is due to the property of Paillier encryption stating that encrypted message m∈ZN={0, 1, 2, 3, …, N-1}.
Then due to homomorphic property of Paillier encryption when all encrypted Votes are multiplied the
obtained result E (computed mod N2) can be correctly decrypted and indicate the sum of all Votes.
Then encoding to Votes for every candidate they must be chosen in such a way that they can be
distinguished from the sum of Votes of other candidate.

Let us consider three candidates Can1, Can2, Can3 for our generated PuKEC=N=13843, |N|=14 bits.
For Votes separation of 3 Candidates we assign the total sum of Votes is represented by 4 bits for every candidate.
This sum can be achieved by optimal encoding of Votes consisting of the following cases.

The Vote for Can1 is encoded by number 28=256. Then If all 15 Voters vote for Can1 the total sum of votes will

be 15256=3840. Notice that 3840+256=4096=212.

1.

The Vote for Can2 is encoded by number 24=16. If all 15 Voters vote for Can2 the total sum will be 2.

1516=240. Notice that 240+16=256=28.
The Vote for Can3 is encoded by number 1. If all 15 Voters vote for Can1 the total sum will be 15 = 1111b.3.

Then the maximal sum of votes is obtained in the case 1 and is equal to 3840 < 14351=N.
In tables below the maximal sum of Votes for Can1, Can2, Can3 encoded in binary with 4 bit length is presented.
Then the maximal sum of Voters votin for the candidate Can1 can not exceed number 15=24-1=1111b.

0 0 0 0 0 0 0 0 0 0 0 1

Can1 Can2 Can3

0 0 0 0 0 0 0 1 0 0 0 0

Can1 Can2 Can3

0 0 0 1 0 0 0 0 0 0 0 0

Can1 Can2 Can3

For Can3: 0000 0000 0001b=1

For Can2: 0000 0001 0000b=24 =16

For Can1: 0001 0000 0000b=28 =256

0 0 0 0 0 0 0 0 1 1 1 1

Can1 Can2 Can3

0 0 0 0 1 1 1 1 0 0 0 0

Can1 Can2 Can3

1 1 1 1 0 0 0 0 0 0 0 0

Can1 Can2 Can3

For Can3: 0000 0000 1111b=15

For Can2: 0000 1111 0000b=240

For Can1: 1111 0000 0000b=3840

Sum of total votes for every candidate:

The Globe wide Voting
 `116_004_Paillier-Encr-eVoting Page 3

The Globe wide Voting

Let us imagine that election is performed in the half of the Globe with number of Voters M is about 4 billions.
Let M < 232 = 4 294 967 296.
Let the number of Candidates to be elected is about 1000.
Let K < 210 = 1 024.
Then the number of bits for election data representation for every of 1024 = 210 Candidates is

210232 = 242 = 4 398 046 511 104 and is about 4 trillions

Then the maximal sum of Votes is KM and is represented by 242 = 4 398 046 511 104 bits number and is corresponding
to the decimal number (2)^(242) - 1 = 24 398 046 511 104 - 1.
Since the sum of Votes must be less than PuKEC=N, then N must be close to the number 24 398 046 511 104 - 1.
Then |N|= 4 398 046 511 104 bits.

Since N=pq, where p, q are primes, then |p|=|q|= 2 199 023 255 552 bits.
The problem is to generate such a big prime numbers.
If we encode decimal numbers in ASCII code then 1 decimal digit is encoded by 8 bits.
Then p, q numbers in decimal representation will have 2 199 023 255 552 / 8 = 274 877 906 944 decimal digits.
It is more than 274 billions.

Problem solution.

The solution is to divide election into different Voting Areas so reducing number of Voters M.
Then encryption scheme becomes more practical and more efficiently realizable.
Let we are able to generate considerable large prime numbers p, q having 215 = 32 768 bits,
i.e. |p|=|q|= 215 = 32 768 bits and hence are bounded by 232768 - 1 such a huge decimal number.
Notice that in traditional cryptography for prime numbers it is enough to have 4096 bit length.

Then N=pq will have 32 768 + 32 768 = 65 536 = 216 bit length and hence is bounded by the following
265 536 - 1 huge decimal number.
Then the arithmetic operations are performed with such a huge numbers and even with numbers up to N2

since operations mod N2 are used. Therefore the special software is needed.
Let Voting Areas are divided in such a way that they can serve about 16 millions Voters.
Assume that number of Voters M < 16 777 215 = 224 - 1. Then |M| = 24 bits.
Then for every candidate we must dedicate 24 bits in the total string of bits of number PuKEC=N where
|N|=216 = 65 536 bit length.
Then number of Candidates K in Voting Area is the following:
 K = |N| / |M| = 216 / 24 = 2731.
The distribution of Candidates and the number of bits them assigned is presented in table.

 Total length of N is 65 536 bits

24 bits 24 bits 24 bits 24 bits

Can1 Can2 Can3 Can2731

There are 2 problems must be solved:
To generate 2 large prime numbers p, q having 215 = 32 768 bit length ~ 1010000 : it is feasible.1.
To perform a computations with large numbers using special software having 232 = 4 294 967 296 bits2.
when operations are performed mod N2 .

Practical exercises

 `116_004_Paillier-Encr-eVoting Page 4

>> p=109;
>> pb=dec2bin(p)
pb = 1101101
>> q=127;
>> qb=dec2bin(q)
qb = 1111111
>> N=p*q
N = 13843
>> Nb=dec2bin(N)
Nb = 11011000010011
>> N_2=int64(N*N)
N_2 = 191628649

>> dec2bin(N_2)
ans = 1011 0110 1100 0000 0101 0110 1001

>> fy=(p-1)*(q-1)
fy = 13608

>> vw=16
vw = 16
>> rw=randi(N-1)
rw = 5029
>> gcd(rw,N)
ans = 1
>> ew1=mod_exp((1+N),vw,N_2)
ew1 = 221489
>> ew2=mod_exp(rw,N,N_2)
ew2 = 115257872
>> ew=mod(ew1*ew2,N_2)
ew = 157077575

>> w2=256
v2 = 256
>> r2=randi(N-1)
r2 = 12539
>> gcd(r2,N)
ans = 1
>> e21=mod_exp((1+N),v2,N_2)
e21 = 3543809
>> e22=mod_exp(r2,N,N_2)
e22 = 57431777
>> e2=mod(e21*e22,N_2)
e2 = 184773534

>> E=mod(ew*e2,N_2)
E = 108508702

>> d1=mod_exp(E,fy,N_2)

The total maximal number of sum of votes with 15 voters is 3840 < N = 13843.

% PuKEC=N=13843
% |N|=14 bits

% PrK=fy

 `116_004_Paillier-Encr-eVoting Page 5

>> d1=mod_exp(E,fy,N_2)
d1 = 73298686
>> d2=mod((d1-1)/N,N)
ans = 8462
>> d2=mod((d1-1)/N,N)
d2 = 5295
>> fy_m1=mulinv(fy,N)
fy_m1 = 1885
>> d3=fy_m1
d3 = 1885
>> m=mod(d2*d3,N)
m = 272
>> V=m
V = 272

>> NVCan1=floor(272/256)
NVCan1 = 1
>> 272/256
ans = 1.0625

>> SumVCan2=V-1*256
SumVCan2=16
NVCan2 = floor(SumVCan2/16)
NVCan2=1

P.Vardas No ri ci c V_by_M: cMi c*cMi Dec(c*cMi) Tot_S_of_V

Au. Juozas 1 16339 149318501 216987098 92831661 152067656 896 896

Be. Antanas 2 8609 32143614 216987098 123083220 203234256 896 896

3

4

5

6

7

8

9

Election examole by students

Jokūbas Žitkevičius 15:44

E1=68076817 Can3=1

Melita 15:44

E2=158874063 Can2=16

Egidijus Sinkevičius

E3=157077575 Can2=16

Silvija Petkeviciute 15:45

E4=182226291 Can1=256

The multiplication result of

Encrypted votes:

E=E1*E2*E3*E4 mod N2 = 114046

Can1=4, Can2=10, Can3=8

1192= 4*256+10*16+8*1

1, 16, 16, 256

1*256+2*16+1*1 = 289

>> v1 = pai_dec(fy, N, E1)
v1 = 1
>> v2 = pai_dec(fy, N, E2)
v2 = 16
>> v3 = pai_dec(fy, N, E3)
v3 = 16
>> v4 = pai_dec(fy, N, E4)
v4 = 256

>> E12=mod(E1*E2,N_2)
E12 = 178689144
>> E34=mod(E4*E3,N_2)
E34 = 33756858
>> E1234=mod(E12*E34,N_2)
E1234 = 159883416

>> v1234 = pai_dec(fy, N, E1234)
v1234 = 289

 `116_004_Paillier-Encr-eVoting Page 6

9

10

11

12

12

14

15

No N_of_V_Can1 N_of_V_Can2 N_of_V_Can3 Tot_N_of_V Dec(cMi) Acc/Dec cMi Can1 Can2 Can3

1 5 8 0 13 512, 2 balsai uz pirma Dec 3 8 0

2 6 8 0 14 256, 256, 256 Dec 3 8 0

3

4

5

6

7

8

9

10

11

12

12

14

15

ri Random number generated for Paillier encryption

ci Your vote encrypted by Paillier encryption

c The product of all encrypted votes in your polling station. Provided by lecturer

V_by_M: cMi Encrypted Vote received by Mail: cMi. Provided by lecturer

c*cMi Multiplied encrypted votes in polling station multiplied by cMi

Dec(c*cMi) Decryption all multiplied votes

Tot_S_of_V Total sum of votes

N_of_V_Can1 Number of votes for Can1

N_of_V_Can2 Number of votes for Can2

N_of_V_Can3 Number of votes for Can3

Tot_N_of_V Total number of votes

Dec(c*Mi) Decrypted vote cMi received by Mail

Acc/Dec cMi Accept or Decline vote received by Mail. Input: Acc or Dec

Can1 Number of votes for Can1

Can2 Number of votes for Can2

Can3 Number of votes for Can3

0 0 0 0 0 0 0 0 0 0 0 1

Can1 Can2 Can3
For Can3: 0000 0000 0001b=1

 `116_004_Paillier-Encr-eVoting Page 7

Till this place

0 0 0 0 0 0 0 1 0 0 0 0

Can1 Can2 Can3

0 0 0 1 0 0 0 0 0 0 0 0

Can1 Can2 Can3

For Can2: 0000 0001 0000b=24 =16

For Can1: 0001 0000 0000b=28 =256

 `116_004_Paillier-Encr-eVoting Page 8

 `116_004_Paillier-Encr-eVoting Page 9

